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Abstract. The dynamics of Bose-Einstein condensates in the lowest energy band of a one-dimensional
optical lattice is generally disturbed by the presence of transversally excited resonant states. We propose
an effective one-dimensional theory which takes these resonant modes into account and derive variational
equations for large-scale dynamics. Several applications of the theory are discussed and a novel type of
“triple soliton” is proposed, which consists of a superposition of a wavepacket at the upper band edge and
two transversally excited wavepackets which are displaced in quasi-momentum space.

PACS. 03.75.-b Matter waves – 05.45.-a Nonlinear dynamics and nonlinear dynamical systems

1 Introduction

The phenomenon of Bose-Einstein condensation is a col-
lective effect which relies on the bosonic nature of the
particles alone (for reviews see, e.g., Refs. [1–6]). Although
an interaction between particles is not needed for the cor-
responding phase transition, its presence has a substan-
tial influence on the properties of a Bose-Einstein conden-
sate (BEC). In this context, solitons are of fundamental
interest since they represent states whose very existence
relies on the interaction.

For atomic BECs, bright solitons as well as dark soli-
tons have been experimentally demonstrated for atoms
with attractive [7,8] and repulsive interaction [9,10], re-
spectively. The present work is motivated by the recent ob-
servation of gap solitons in a 87Rb BEC [11]. Gap solitons
are bright solitons for a BEC with repulsive interaction in
an optical lattice and rely on the negative effective mass
around the upper band edge of the periodic potential. To
create a gap soliton it is necessary to control the motion
of the initial wavepacket in quasi-momentum space [12].
This kind of physical situation has recently been inten-
sively studied, both theoretically [13–16] and experimen-
tally [17–19].

In the present work we consider the influence of the
transverse confining potential on the dynamics of a BEC
in an one-dimensional optical lattice. We are particularly
interested in the behaviour around the upper band edge
of the lowest energy band. In this energy range the trans-
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verse confinement leads to the presence of transversally
excited resonant states which significantly change the sta-
bility of the BEC [20,21] and alter its dynamics [22]. The
resonances are important if the transverse excitation en-
ergy is small compared to the modulation depth of the
optical lattice.

Much of the recent research on BEC is concerned with
an effectively one-dimensional situation. Generally this
can be achieved if the transverse excitation energy is large
compared to the interaction energy. This allows a simpli-
fied one-dimensional description of the dynamics by ei-
ther projecting the collective wavefunction on the trans-
verse ground state [2,6] or, more accurately, by making
a Gaussian variational ansatz for the transverse shape of
the wavefunction [23,24]. While such an approach gives
excellent agreement with a full three-dimensional theory
in absence of transverse resonances (i.e., around the lower
band edge in the case of a 1D optical lattice [21]), it is
not suitable to describe a BEC around the upper band
edge [20,21]. In this paper we present a generalized one-
dimensional theory by projecting the collective wavefunc-
tion on a superposition of longitudinal wavepackets cen-
tered around the resonant states. In Section 2 we will
review the preparation of a BEC at the upper band edge
in order to motivate our particular approach. In Section 3
simplified dynamical equations are derived and compared
to previous approaches. In Section 4 we further reduce
these equations by making a variational ansatz for the
wavefunction. In Section 5 we will discuss several solu-
tions of this system.
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2 Description of the problem

Very recently, gap solitons have been experimentally ob-
served in a BEC of Rubidium atoms [11]. Gap solitons cor-
respond to a wavepacket of repulsively interacting atoms
prepared at the upper band edge of the lowest band in
an optical lattice. The process of creating a gap soliton is
quite sophisticated since one has to move the BEC from
the ground state, where it first is created, to the upper
band edge of the optical lattice. For the purpose of this
paper it can be summarized in the following way: first, a
BEC is created in the ground state of a 3D harmonic trap
Vtrap(x) = M2ω2

‖z
2/2+M2ω2

⊥(x2 +y2)/2, where M is the
atomic mass and ωi are the axial and transverse trapping
frequencies. Then a one-dimensional optical lattice of the
form

Vopt(z, t) = V0 cos(2kLz + φ(t)) (1)

along the z-axis is switched on adiabatically and the axial
harmonic trap is switched off (ω‖ = 0). Here, kL is the
wavevector of the laser beam forming the optical lattice.
At this time the lattice phase φ(t) is zero. The BEC is thus
prepared as a wavepacket around the lower band edge of
the lowest band of the optical lattice. Finally, a Bloch os-
cillation is employed (φ(t) varying with time) so that the
wavepacket is slowly moving upwards in the energy band
(so that excitations to higher bands can be neglected) and
eventually reaches the upper band edge. This is an appli-
cation of dispersion management for atomic matter waves
which is described in more detail in reference [12] and is
now of high experimental interest [17–19].

To describe the dynamics of a BEC that is manipulated
within the lowest energy band of the lattice, it would be
desirable to have an effective dynamical equation at hand
which is one-dimensional and based on the effective-mass
approximation, rather than including the full periodic and
transverse trapping potentials. To derive such an equation
we start from the Gross-Pitaevskii equation (GPE) for a
BEC in a 1D optical lattice and a transverse trapping
potential,

i�∂tψ(x, t) =
(
H‖ +H⊥ −Maz

)
ψ(x, t)

+κ|ψ(x, t)|2ψ(x, t) (2)

with x⊥ := (x, y) and

H‖ =
p2

z

2M
+ Vopt(z, t) (3)

H⊥ =
p⊥2

2M
+ Vtrap(x⊥). (4)

Here ψ is the collective atomic wavefunction which we
assume to be normalized to one. The interaction parame-
ter is given by κ := 4π�

2ascattN/M with ascatt being the
atomic scattering length and N the number of atoms in
the BEC. We have also included a homogeneous force term
which corresponds to an acceleration a of the atoms. This
term is closely related to the time variation of the lattice
phase φ(t) and responsible for the generation of Bloch os-
cillations of the wavepacket. To avoid exciting atoms to

higher bands of the optical lattice, the acceleration must
be small enough so that adiabatic motion in the lowest
band is possible. Throughout the paper we will assume
that this is the case. We have omitted a longitudinal con-
fining potential since our aim is to study the effects of the
transverse dynamics rather than the perturbation of the
longitudinal lattice symmetry. A weak longitudinal poten-
tial could be included by introducing a slow variation of
the lattice parameters [25], however.

Being nonlinear and inhomogeneous, equation (2) is
impossible to solve analytically. Even the numerical simu-
lation of it is time-consuming because of the necessity to
resolve features on the scale of half the laser’s wavelength
(which is equal to the period of the lattice). In addition,
it would be desirable to have a description which uses the
(numerically verified) fact that the wavepacket stays local-
ized in the energy band for a long time if the modulation
depth V0 is sufficiently small. We remark that, if V0 gets
too large, a phase transition to a spatially localized state
which is smeared out over the lowest energy band takes
place instead [26].

To derive such an analytical theory, we employ the
observation that a wavepacket, which is narrowly localized
around a certain quasi-momentum q0 in the lowest energy
band, is very broad and varies slowly in position space. Let
us assume for the moment that no transverse excitations
are produced. Then one can make the ansatz

ψ(x, t) = B(z, t)ϕq0(z)χ0(x⊥) (5)

where ϕq0 is a quasiperiodic (Bloch) eigenfunction of
H‖ with quasimomentum q0. The function χ0 denotes
the transverse ground state of the trapping potential.
The (dimensionless) function B(z, t) is an envelope which
describes the large scale features of the wavefunction,
whereas the small-scale features are included in ϕq0 . The
basic idea of our approach is to average over the small
spatial scales and to derive an effective equation for the
large-scale behaviour of the wavefunction, i.e., for the en-
velope B(z, t).

3 Effective dynamical equations for resonant
modes

Before we can start to derive an effective equation, the
ansatz (5) has to be generalized in two aspects. First, since
our aim includes to describe the adiabatic Bloch oscilla-
tion from the lower to the upper band edge, we cannot
assume that the quasimomentum is fixed, but have to ad-
mit a time-dependent q0(t). Secondly, we have to take into
account transverse resonances which appear if q0(t) is in
the vicinity of the upper band edge (see Ref. [20] and
Fig. 1). Numerical investigations suggest that it is suffi-
cient to include the two nearest resonances only, because
all other resonances are negligibly populated. Therefore,
the ansatz (5) needs to be modified to

ψ(x, t) =
∑

i

Bi(z, t)ϕqi(t)(z)χni(x⊥), (6)
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Fig. 1. Scheme of the collective wavepacket’s motion through
the lowest energy band. The dotted lines represent the spec-
trum of noninteracting atoms in a 1D optical lattice and a
transverse harmonic trap. The lowest of these lines corresponds
to the lowest energy band of the lattice for atoms in the trans-
verse ground state. The two upper copies of it are transver-
sally excited atoms in the same band. The BEC is initially
prepared as a wavepacket around the lower band edge (lower
left corner) and is adiabatically moved to the upper band edge
with quasimomentum q0 (dashed arrow). Around the upper
band edge transversally excited resonances occur at quasimo-
menta q1 and q2.

where, for our purposes, i runs from 0 to 2, qi denotes the
quasimomentum around which each of the three modes
is centered, and ni represents the transverse excitation
number (n0 = 0, n1 = n2 = 2 since, by symmetry, only
even levels can be excited [20]). Bi is a slowly varying
envelope function for each of the three modes.

To derive an effective equation for the envelopes, we
average over the small spatial scale set by the lattice length
La = π/kL. Following standard methods, we introduce
an averaging function fav(z) which is slowly varying on
the scale of La, has a narrow support whose width cor-
responds to the resolution of the effective equation, and
which is normalized to one,

∫
fav (z)dz = 1. The width

of fav should be much smaller than the scale on which the
envelopes Bi are varying. A function g(z) is then averaged
by calculating 〈〈g〉〉(z) :=

∫
dz′fav(z′)g(z − z′). With this

method, the envelopes can be extracted from the wave-
function by evaluating

∫
dz′fav(z′)

∫
d2x⊥ χ∗

ni
(x⊥)ϕ∗

qi
(z − z′)ψ(x⊥, z − z′) =

∑

j

δni,nj

∫
dz′fav(z′)Bj(z − z′)ϕ∗

qi
(z − z′)ϕqj (z − z′)

≈
∑

j

Bj(z)δni,nj

∫
dz′fav(z′)ϕ∗

qi
(z − z′)ϕqj (z − z′),

(7)

where we have used that Bj is approximately constant
over the support of fav and where the time dependence,
for brevity, is dropped out. The integral in the last line can
be evaluated as follows: for j = i the function |ϕqi |2 is peri-
odic with period La. Therefore,

∫ La

0 |ϕqi |2dz = La/L since
the Bloch functions are normalized (L is the quantization
length). Since fav is roughly constant on the scale of La,

we find, by cutting the integral into bits of length La,
∫
dz′′fav(z − z′′)|ϕqi (z

′′)|2 ≈
∑

m

fav(z −mLa)
La

L

≈ 1
L
, (8)

since the sum is just the discretized expression for a
Riemannian integral over fav with dz = La. For j �= i, con-
sider first the case that the width Lf of fav is very large,
Lf = L. Then the integral is simply the scalar product
between the two modes and therefore zero unless qj = qi.
For sufficiently large Lf , the integral is still approximately
zero if qi and qj are not too close to each other, since the
product of the Bloch wavefunctions then oscillates rapidly
and averages to zero. Assuming that this is the case we
find from equation (7)

〈〈∫
d2x⊥ χ∗

ni
ϕ∗

qi
ψ

〉〉
(z) =

Bi(z)
L

. (9)

When we apply the same procedure (projecting onto
the transverse modes and averaging over the longitudi-
nal part) to the GPE and insert the ansatz (6), we are
led to

i�Ḃi = �ω⊥

(
ni +

1
2

)
Bi + L

∑

j

δni,nj 〈〈ϕ∗
qi
H‖ϕqjBj〉〉

+κ
∑

j,k,l

B∗
jBkBlI

‖
ij;klI

⊥
ij;kl

+(q̇i −Ma)zBi, (10)

with the usual interaction mode integrals

I
‖
ij;kl :=

∫
dzϕ∗

qi
ϕ∗

qj
ϕqk

ϕql
(11)

I⊥ij;kl :=
∫
d2x⊥χ∗

ni
χ∗

nj
χnk

χnl
. (12)

A dot denotes the derivative with respect to time. In the
derivation of equation (10) we have exploited the fact that
the averaging over the interaction integrals can be done in
much the same way as for equation (7): the averaged in-
teraction integrals are again either periodic or rapidly os-
cillating and therefore do essentially acquire a factor 1/L,
which we have multiplied out in equation (10).

The last line in equation (10) deserves a comment.
The homogeneous potential term −Maz simply survives
the averaging procedure and is a direct consequence of
the corresponding term in equation (2). The term propor-
tional to q̇i arises from the time derivative on the left-
hand side of equation (2) which includes a term of the
form q̇i(∂qiϕqi)Bi. It is not hard to see that, provided the
assumption that the wavepacket remains in the lowest en-
ergy band holds true, the derivative with respect to the
quasi momentum can be approximated by ∂qiϕqi ≈ izϕqi .
The term is then of the same form as the homogeneous
force and can be averaged in the same way. It is inter-
esting to note that in the case of a simple Bloch oscilla-
tion caused by the homogeneous force we have q̇i = Ma
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so that the linear potential is cancelled. This is nothing
but a different description of the fact that a Bloch oscil-
lation simply corresponds to a shift of a wavepacket in
quasimomentum space, again under the condition that no
higher bands are populated. This is the case for the main
wavepacket in Figure 1 for which the time dependence of
its quasimomentum q0 is simply a consequence of the in-
duced Bloch oscillation. However, for the modes q1 and q2
the time dependence of the quasimomenta is determined
by a resonance condition and is not directly related to the
Bloch oscillation. Hence, these two modes are subject to
a renormalized homogeneous force.

To perform the averaging over the longitudinal
Hamiltonian in equation (10), we employ the well-known
effective-mass method from solid state theory (see, e.g.,
Ref. [27]). Using that Bjϕqj is narrowly localized around
quasi momentum qi we can expand this expression in
terms of Bloch wave functions ϕqj+∆q, which are eigen-
functions of H‖ with eigenvalues E(qj + ∆q). The eigen-
value can be expanded to second order in ∆q, resulting in

H‖ϕqjBj ≈
∫
d∆q 〈ϕqj+∆q|ϕqjBj〉

×
(

E(qj) + vj∆q +
∆q2

2M eff
j

)

ϕqj+∆q. (13)

In this equation, we introduced two important physical pa-
rameters: the group velocity vj := ∂E(q)/∂q|q=qj and the
effective mass M eff

j := (∂2E(q)/∂q2|q=qj )−1. Introducing
the function

B̃j(z) :=
∫
d∆qei∆qz〈ϕqj+∆q |ϕqjBj〉, (14)

it is easy to see that the action of H‖ can be expressed as

(H‖ϕqjBj)(z) ≈
∫
dz′

2π
(H(j)

eff,‖B̃j)(z′)

×
∫
d∆qe−i∆qz′

ϕqj+∆q(z), (15)

with the effective Hamiltonian

H
(j)
eff,‖ = E(qj) − i�vj∂z − �

2∂2
z

2M eff
j

. (16)

This allows us to write the averaged Hamiltonian action
appearing in equation (10) in the form

〈〈ϕ∗
qi
H‖ϕqjBj〉〉 =

∫
dz′

2π
(H(j)

eff,‖B̃j)(z′)
∫
dz′′fav(z′′)

×
∫
d∆q ei∆q(z−z′−z′′)u∗qi

(z − z′′)

× uqj+∆q(z − z′′), (17)

where uq are the periodic Bloch wavefunctions, ϕq(z) =
exp(iqz)uq(z). Because of the averaging, we are inter-
ested in distances z − z′ much larger than La. In this

case, the phase factor in the integral over ∆q varies much
faster with ∆q than the periodic Bloch function uqj+∆q.
We therefore can replace the latter by uqj . The integral
over ∆q then becomes, on scales much larger than La, the
delta function 2πδ(z − z′ − z′′) and we arrive at

〈〈ϕ∗
qi
H‖ϕqjBj〉〉 =

∫
dz′′(H(j)

eff,‖B̃j)(z − z′′)f(z′′)

×ϕ∗
qi

(z′′)ϕqj (z
′′)

≈ (H(j)
eff,‖B̃j)(z)

∫
dz′′f(z′′)

×ϕ∗
qi

(z′′)ϕqj (z
′′)

≈ δqi,qj

1
L
H

(j)
eff,‖B̃j . (18)

The last step in our derivation of effective equations for
the envelope functions Bj is to show that Bi and B̃i are,
on average, equal. To do so, we first note that Bi =
L〈〈ϕ∗

qi
ϕqiBi〉〉 since Bi is slowly varying. Inverting equa-

tion (14), we can rewrite this as

Bi(z) = L

∫
dz′′fav(z′′)

∫
d∆qϕ∗

qi
(z − z′′)

× ϕqi+∆q(z − z′′)
∫
dz′

2π
e−i∆qz′

B̃i(z′). (19)

It is then possible to repeat the argument given above for
the action of H‖. Writing the quasiperiodic Bloch func-
tions ϕq in terms of the periodic Bloch functions uq, we
again find a rapidly oscillating exponential in ∆q which
results in a spatial delta function for large scales. Inte-
grating this we find

L〈〈|ϕqi |2Bi〉〉 = L〈〈B̃i|uqi |2〉〉
≈ LB̃i〈〈|uqi |2〉〉
= B̃i. (20)

Using this identity we find for the effective equation de-
scribing the large scale dynamics of the envelopes

i�Ḃi = �ω⊥

(
ni +

1
2

)
Bi +H

(i)
eff,‖Bi

+κ
∑

j,k,l

B∗
jBkBlI

‖
ij;klI

⊥
ij;kl

+(q̇i −Ma)zBi. (21)

For the case of a single wave packet centered around
a fixed quasimomentum, an equation similar to equa-
tion (21) has also been derived using multiple-scale pertur-
bation theory in the context of nonlinear optics [28] and
atom optics [29–31]. We have chosen a different approach
since the inclusion of time-dependent quasi momenta is
more obvious using the averaging method. In the follow-
ing sections we will apply this equation to examine the
conditions under which gap solitons can be formed and
how they evolve in time.
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4 Derivation of variational equations

A major advantage of equation (21), compared to
the full GPE, is the simple form of the effective
Hamiltonians H(i)

eff,‖. It describes interacting particles in
a homogeneous external potential with different masses
and velocities. This allows us to find a simplified ana-
lytical description and thus to gain more insight in the
dynamics of a BEC in an optical lattice. Numerical sim-
ulations of the full GPE indicate that for each mode the
wavepacket remains localized around qi for a long time if
the optical lattice is not too deep. It is therefore reason-
able to assume that the wavepackets can approximately be
described as Gaussian wavepackets and to make a varia-
tional ansatz for them. Following the technique described
in references [2,32], we first observe that equation (21) can
formally be derived from the Lagrangian

L =
∑

i

{
i
�

2

(
Ḃ∗

i Bi −B∗
i Ḃi

)

+
(
E(qi) + �ω⊥

(
ni +

1
2

)
− (Ma− q̇i)z

)
|Bi|2

+i
�vi

2
(∂zB

∗
i Bi −B∗

i ∂zBi) +
�

2

2M eff
i

|∂zBi|2
}

+
κ

2

∑

i,j,k,l

B∗
i B

∗
jBkBlI

‖
ij;klI

⊥
ij;kl . (22)

A consistent variational ansatz for Gaussian envelopes is
achieved by setting

Bi(z, t) =
Ai(t)√
π1/2wi(t)

exp
(
− (z − zi(t))2

2wi(t)2
− iφi(t)

+ iβi(t)z + iγi(t)z2
)
. (23)

This describes a wavepacket of width wi and amplitude Ai

(having dimensions of length1/2 so that Bi is dimen-
sionless). It is spatially localized around zi and has an
instantaneous energy of �φ̇i. Its mean velocity and its
variance are given by 〈vi〉 = (βi + 2γiwi)/M eff

i and ∆vi =√
2γ2

iw
2
i + 1/(2w2

i )/M
eff
i .

Inserting this ansatz for the envelopes in the
Lagrangian and extremizing the corresponding action in-
tegral, we derived a set of 18 equations which describe
the evolution of the three Gaussian wavepackets involved.
This task, as well as the algebraic manipulations follow-
ing below, are rather tedious and therefore have been
completed using Mathematica [33]. Since the variational
equations are somewhat lengthy we exploited the special
features of our system to reduce its complexity. To do
so, we restrict our considerations to the case when the
wavepackets are already at the upper band edge so that
the quasi momenta are time-independent and given by
q0 = �kL and q1 = �kL−δq as well as q2 = �kL+δq, where
kL is the wavenumber of the optical lattice which appears
in the optical potential (1). δq is identical to q2−q0. It can
be derived from the resonance condition that the three en-
ergies E(qi)+�ω⊥(ni + 1

2 ) for i = 0, 1, 2 are equal. Setting

this energy to zero we can also omit the corresponding
terms in the Lagrangian. Because the wavepackets are al-
ready at the upper band edge we will also not need the
homogeneous force to induce Bloch oscillations, i.e., we
set a = q̇i = 0.

The special values of the quasi momenta imply that
most of the interaction integrals I‖ij;kl are zero or have
an identical value. This can be seen by expanding the
Bloch wavefunctions in terms of momentum eigenstates,
ϕq(z) =

∑
l cl(q) exp(iz(q+2l�kL)). By Fourier transform-

ing the stationary Schrödinger equation H‖ϕq = E(q)ϕq ,
one finds the following equation for the expansion coeffi-
cients cl(q),

E(q)cl(q) =
(q + 2l�kL)2

2M
cl(q) +

V0

2
(
cl+1(q) + cl−1(q)

)
.

(24)
This equation shows that the expansion coefficients are
real and that, if cl(�kL − δq) is a solution, then so is
cl(�kL + δq) = c−l−1(�kL − δq). Thus, we have the re-
lation

ϕq2(z) = ϕ∗
q1

(z). (25)

It is well-known, and can be seen from the above ex-
pansion, that Bloch wavefunctions are periodic up to
a phase factor exp(iqx). Therefore, the three wavefunc-
tions ϕqi are oscillating with a phase factor exp(±iδqx)
relative to each other. In the limit of an infinite optical
lattice, the interaction integral I‖ij;kl will therefore vanish
if these phase factors do not exactly cancel each other.
For instance, I‖00;01 = 0 because its integrand is propor-

tional to exp(iδqx), but I
‖
00;12 �= 0. This, in combina-

tion with equation (25), ensures that all interaction in-
tegrals, except I‖00;00 and I‖11;11 = I

‖
22;22 = I

‖
12;12 as well as

I
‖
01;01 = I

‖
02;02 = I

‖
00;12, do vanish (in addition, the sym-

metries I‖ij;kl = I
‖
ji;kl and I

‖
ij;lk = I

‖
ij;kl have to be taken

into account). Thus, there are only three independent in-
teraction parameters which we will denote by

κ0 :=
κ√
π�
I
‖
00;00I

⊥
00;00,

κ1 :=
κ√
π�
I
‖
11;11I

⊥
11;11,

κ01 :=
κ√
π�
I
‖
01;01I

⊥
01;01. (26)

Even with these simplifications the resulting equations are
still very lengthy, but they admit the analysis of symmetric
solutions. By symmetry, we have v0 = 0 and v2 = −v1 for
the group velocities of the wavepacket, and M eff

2 = M eff
1

for the effective masses. Under these conditions one can
show that z0 = 0 and β0 = 0 are solutions of the varia-
tional equations. This result is intuitively clear and just
means that the central wavepacket remains at the upper
band edge with mean position and velocity zero. In addi-
tion, symmetry implies that the two transversally excited
wavepackets should evolve in an identical way, but with
opposite mean velocities (because their group velocities
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differ by a sign). We therefore can set A2 = A1, γ2 = γ1,
φ2 = φ1, w2 = w1, and β2 = −β1, z2 = −z1, which re-
duces the number of independent variational parameters
to ten (four for q0 and six for q1). In addition, the con-
servation of the number of atoms implies the constraint
A2

0 + 2A2
1 = L, so that we are effectively left with nine

independent parameters1. The resulting variational equa-
tions are given by

Ȧ0 =
e
− z2

1
w2

1 S(1)A0A1
2 κ01

w0w1
, (27)

ż1 = v1 +
� β1

M eff
1

+
2 � z1 γ1

M eff
1

+
e
− z2

1
w2

1 S(1)A0
2 z1 κ01

w0 w1
, (28)

ẇ0 =
2 �w0 γ0

M eff
0

+
e
− z2

1
w2

1 A1
2

(
S(3) − S(1) w0

2
)
κ01

w0
2 w1

, (29)

ẇ1 =
2 �w1 γ1

M eff
1

+
e
− z2

1
w2

1 A0
2

(−S(3) + S(1) w1
2 − 2S(1) z1

2
)
κ01

2w0 w1
2

,

(30)

γ̇0 =
�

2M eff
0 w0

4
− 2 � γ0

2

M eff
0

+
A0

2 κ0

2
√

2w0
3

+
e
− z2

1
w2

1 A1
2

(−C(3) + C(1) w0
2
)
κ01

w0
5 w1

+
4 e−

z2
1

w̄2 A1
2

(
w̄2 − 2 z12

)
κ01

w̄5
, (31)

γ̇1 =
�

2M eff
1 w1

4
− 2 � γ1

2

M eff
1

+
A1

2 κ1

2
√

2w1
3

+
e
−2

z2
1

w2
1 A1

2
(
w1

2 − 4 z12
)
κ1√

2w1
5

+
2κ01 e

− z2
1

w̄2 A0
2

(
w̄2 − 2 z12

)

w̄5

+
κ01e

− z2
1

w2
1 A0

2
(−C(3) + C(1)(w1

2 − 2z12)
)

2w0 w1
5

, (32)

1 The amplitudes Ai are normalized to L because the full
wavefunction Biϕqi should be normalized to one and ϕqi car-
ries a factor of 1/

√
L because of its normalization.

φ̇0 =
�

2M eff
0 w0

2
+

5A0
2 κ0

4
√

2w0

+
e
− z2

1
w2

1 A1
2

(−C(3) + 3C(1) w0
2
)
κ01

2w0
3 w1

+
2 e−

z2
1

w̄2 A1
2(3w0

4 + 2w1
4 + w0

2(5w1
2 − 2 z12))κ01

w̄5
,

(33)

φ̇1 =
�

2M eff
1 w1

2
− � z1

2

2M eff
1 w1

4
+ v1 β1

+
� β1

2

2M eff
1

+
κ2A1

2

4
√

2w1
5

(

5

(

1 + 2 e
−2

z2
1

w2
1

)

w1
4

+2

(

−1 + 2 e
−2

z2
1

w2
1

)

w1
2 z1

2 + 16 e
−2

z2
1

w2
1 z1

4

)

+
e
− z2

1
w2

1 A0
2κ01

4w0 w1
5

(
C(3)(2z12 − w1

2)

+C(1)(3w1
4 + 4z14)

)

+
e−

z2
1

w̄2 A0
2κ01

w̄5

(
2w0

4 + 3w1
4 + 4 z14

+w0
2

(
5w1

2 + 2 z12
))
, (34)

β̇1 = − � z1

M eff
1 w1

4
− 2 v1 γ1 − 2 � β1 γ1

M eff
1

+
e
−2

z2
1

w2
1
√

2A1
2 z1

(
w1

2 + 4 z12
)
κ1

w1
5

− A1
2 z1 κ1√
2w1

3

+
8 e−

z2
1

w̄2 A1
2 z1

3 κ01

w̄5

+
e
− z2

1
w2

1 A0
2 z1

(
C(3) + 2C(1) z1

2
)
κ01

w0 w1
5

. (35)

In these equations we have introduced the notation w̄ :=√
w2

0 + w2
1 and

S(n) := i
e−2i(φ0−φ1)

(
1

w2
0

+ 1
w2

1
− 2i(γ0 − γ1)

)n/2
+ c.c.,

C(n) :=
e−2i(φ0−φ1)

(
1

w2
0

+ 1
w2

1
− 2i(γ0 − γ1)

)n/2
+ c.c. (36)
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The functions S(n) depend on φi, γi, and wi and do vanish
for φ1 − φ0 = 0.

5 Special solutions of the variational
equations

Initially empty transverse excited modes: a surprising con-
sequence of the variational equations can be seen im-
mediately: it follows from equation (27) that, when all
atoms are in the central wavepacket (A1 = 0), the am-
plitude A0 and therefore also A1 will not change in time.
Thus, the transversally excited wavepackets would never
be populated. This prediction is a direct consequence of
the assumption I

‖
00;01 (=I‖00;02) = 0 and in striking con-

tradiction to the numerical results of reference [20]. This
difference can be resolved when one recalls the conditions
under which our analytical theory is valid. I‖00;01 = 0 is
exactly fulfilled only in the limit of an infinite optical lat-
tice. In a finite lattice the fact (discussed above) that the
integrand is oscillating with a phase factor of exp(±iδqz)
only leads to oscillations of I‖00;01, so that it is zero on
average only. Since our wavepackets have a finite width
in quasimomentum space, there will be a finite excita-
tion probability even when A1 = 0 initially. In addition,
our theory assumes that the three wavepackets are not
overlapping in quasimomentum space, since only under
this condition the averaging method can yield reasonable
results. In practice, this is not exactly fulfilled and will
lead to corrections to the prediction of the averaged equa-
tions. However, the time scale for transverse excitation
out of a central wavepacket is quite large (typically about
70 ms [20]) so that the averaged equations should provide
a valid description for shorter times. In fact, the present
considerations may provide another reason for the long
time scales for transverse excitations. In addition, dur-
ing the preparation of the wavepacket at the upper band
edge through Bloch oscillations, the transversally excited
modes are populated. Therefore, an initial condition with
A1(0) �= 0 is realistic when we describe a system that
already is prepared at the upper band edge.

On the other hand, when using the initial condition
A1(0) = 0 we are left with a theory for the central
wavepacket only, since there are never any transversally
excited atoms to interact with. In this case our descrip-
tion reduces to the case considered in reference [32] (but
with a negative effective mass) so that one can transfer
most of the results to our case. We therefore will not dis-
cuss it further.

Case of three initial gap solitons: another case of in-
terest is the case when all three wavepackets are initially
forming independent gap solitons. That is, in the absence
of mutual interactions each of the three envelopes corre-
sponds to a stationary solution of the variational equa-
tions with self-interaction. We can find these solutions by
setting κ01 = 0 and removing the terms proportional to
κ1 exp(−2z2

1/w
2
1), which describe the interaction between

wavepacket q1 and q2 (see above). It is easy to see that in
this case the soliton solution is given by γi = βi = 0 and

zsol
1 = v1t as well as

wsol
i = −

√
2�

Asol
i

2
κiM eff

i

, (37)

φsol
i = φi(0) +

3Asol
i

2
κi

4
√

2 wsol
i

t. (38)

The question remains whether this solution is stable
against the presence of the mutual interactions of the
three gap solutions. To answer it, we have made a sta-
bility analysis by linearizing the variational equations in
the deviations from the soliton solution (37), (38). We set
wi = wsol

i + εδwi (and similarly for the other dynamical
variables) and consider all equations only to first order
in ε, whereby the mutual interaction terms are treated
as of first order in ε. This is justified since these terms
all include a factor which exponentially decays in time
and thus have limited influence. Such a factor arises be-
cause the three wavepackets all have different group ve-
locities and thus separate after a short time, the expo-
nential being a consequence of the overlap between the
Gaussian wavepackets. The resulting linearized equations
are given by

˙δA0 = e
−

(
t v1

wsol
1

)2

2 sin(∆φ)Asol
0 Asol

1
2
κ01

wsol
1

, (39)

˙δw0 = −√
2Asol

0

2
δγ0 κ0 w

sol
0

2
, (40)

˙δγ0 =
Asol

0
2
δw0 κ0

2
√

2wsol
0

4 +
Asol

0 δA0 κ0√
2wsol

0
3 + e

−
(

t v1

wsol
1

)2

fγ0(t),

(41)

˙δφ0 =
−Asol

0
2
δw0 κ0

4
√

2wsol
0

2 +
5Asol

0 δA0 κ0

2
√

2wsol
0

+ e
−

(
t v1

wsol
1

)2

fφ0(t),

(42)

δ̇z1 =−A
sol
1

2 (δβ1 + 2 t v1 δγ1) κ1 w
sol
1√

2
+e

−
(

t v1

wsol
1

)2

fz1(t),

(43)

˙δw1 = −
√

2Asol
1

2
δγ1 κ1 w

sol
1

2
+ e

−
(

t v1

wsol
1

)2

fw1(t), (44)

˙δβ1 = −
κ1 v1t

(
Asol

1
2
δw1 + 2Asol

1 δA1 w
sol
1

)

√
2wsol

1
4

− 2v1δγ1 + e
−

(
t v1

wsol
1

)2

fβ1(t), (45)

˙δγ1 =
Asol

1 κ1

(
Asol

1 δw1 + 2 δA1w
sol
1

)

2
√

2wsol
1

4 + e
−

(
t v1

wsol
1

)2

fγ1(t),

(46)
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˙δφ1 = −
Asol

1
2
δw1 κ1

(
2 t2 v12 + wsol

1
2
)

4
√

2wsol
1

4

+
Asol

1 δA1 κ1

(
−2 t2 v12 + 5wsol

1
2
)

2
√

2wsol
1

3

+ v1 δβ1 + e
−

(
t v1

wsol
1

)2

fφ1(t). (47)

The functions fα(t) depend on the soliton solution pa-
rameters and increase at most polynomially (degree less
than 4) in time. They represent inhomogeneities, similarly
to the right-hand side of equation (39). Because of the
exponentially decaying factor, these terms are only im-
portant for times t < wsol

1 /v1. Therefore, to analyze the
stability of the soliton solution, it is sufficient to solve the
homogeneous linearized equations for a general set of ini-
tial conditions, since for large enough times this correctly
describes the general solution.

To reduce the length of the linearized equations we
have made an additional approximation. Our numerical
simulations of the full GPE indicate that, after the BEC
has been transferred to the upper band edge, the number
of atoms in the q0 wavepacket is considerably larger than
in the other two modes2. Since A2

i = LNi, where Ni is the
initial number of atoms in each mode, one can see that
Asol

1 � Asol
0 and therefore wsol

1 � wsol
0 . Assuming that

this is the case, we here present the linearized equations
only to second order in the ratio Asol

1 /Asol
0 .

The general solution of the homogeneous linearized
equations is not hard to find. One immediately sees
that δA0 and therefore, because of atom number conserva-
tion, also δA1 are constant in time. δw0 and δγ0 are then
coupled to each other only so that equations (40) and (41)
are easily solved. δw0 and δγ0 then generally show a purely
oscillating behaviour. This solution can then be inserted
into equation (42) for the homogeneous phase factor. The
latter then grows in time, in addition to some oscillating
factors, proportional to 3tκ0A

sol
0 δA0(0)/(

√
2wsol

0 ). When
this expression is compared to the evolution of the soli-
ton phase factor (38) it becomes obvious that this linear
increase in δφ0 just corresponds to a small deviation, pro-
portional to δA0(0)/Asol

0 , from the unperturbed energy of
the soliton. We therefore have shown that the central soli-
ton around quasi momentum q0 is stable against the inter-
action with the other two wavepackets since its stability
does also not depend on the evolution of the deviations in
these wavepackets.

The situation is quite different for the transversally
excited modes. Repeating the steps leading to the solution
for the central wavepacket, one can see that the solution

2 The variational equations presented in this work would pre-
dict that all atoms remain in the transverse ground state since
the excited modes are initially (almost) empty.

for δβ1 is given by

δβ1(t) = δβ1(0) − 2v1t cos(Ω1t)δγ1(0)

− v1t sin(Ω1t)

wsol
1

2

(
2
δA1(0)
Asol

1

+
δw1(0)
wsol

1

)
, (48)

with Ω1 := (4/3)dφsol
1 /dt. This growing oscillatory

behaviour clearly indicates instability against any ini-
tial deviations δw1(0), δA1(0), δγ1(0), which unavoidably
are introduced by the interaction between the three
wavepackets.

It is worth to examine the origin of this instability
more closely. Our arguments are based on the fact that
the two transversally excited wavepackets move away from
the central wavepacket. This happens because we have
set β1 = β2 = 0 for the excited wavepackets, so that
they propagate with the group velocity ±v1. Hence, af-
ter some time the wavepackets are separated, so that the
mutual interaction disappears and cannot cause instabil-
ity anymore. However, setting βi = 0 in absence of mu-
tual interactions creates another source of instability: even
in a strictly one-dimensional situation, a gap (or bright)
soliton with non-vanishing group velocity is only stable3

if the phase factor exactly matches the group velocity,
βi = −M eff

i vi/�. Therefore, the instability of the transver-
sally excited wavepackets is the same as that of an isolated
gap soliton with the wrong phase factor.

The only possibility to avoid this kind of instability
is to choose the appropriate phase factors β2 = −β1 =
−M eff

1 v1/�. As a consequence, the excited wavepackets
would remain at their original position so that the mu-
tual interaction would not decrease. Since the latter is a
resonant coupling between the three wavepackets a general
superposition of three gap solitons would not correspond
to a stationary solution anymore. In the next section we
will demonstrate that for a particular choice of parameters
this problem can be overcome.

6 Triple solitons

A particularly interesting situation appears when one tries
to construct stationary wavepackets which remain spa-
tially localized around z1 = 0. As is evident from equa-
tion (28), this is only possible for β1 = −M eff

1 v1/�. In-
terestingly, this condition also guarantees the validity of
β̇1 = 0 in equation (35), so that this requirement is self-
consistent. The remaining equations will only lead to a
stationary solution if the populations of the three modes
are constant, i.e., if Ȧ0 = 0. Apart from the trivial so-
lutions A0 = 0 or A1 = 0 this can be achieved by the
condition S(1) = 0. A natural solution to this condition
is φ1 − φ0 = 0 and γ0 = γ1 = 0, whereby the latter as-
sumption also ensures that the widths of the wavepackets

3 For other values of βi a wavepacket characterized by equa-
tions (37) and (38) is still a stationary solution of the nonlinear
Schrödinger equation, but it is not stable.
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remain constant. A necessary condition for this to hold
are the equations

φ̇1 − φ̇0 = γ̇0 = γ̇1 = 0. (49)

Using equations (31–34) this leads to algebraic conditions
on the widths and populations of the three modes. The
simplest way to solve these algebraic conditions is to, first,
fix the ratio between the widths according to w2 = ηw1,
where η is some positive number. In addition, we write
κi = Nκ̄i/L so that κ̄i is independent of the total num-
ber of atoms N and remains finite when the quantization
length L goes to infinity. For these settings we derived so-
lutions of the algebraic conditions which determine N , w1,
and the population distribution among the modes as a
function of η, κ̄i, M eff

i , and v1. A particularly nice ex-
ample is the case when all three wavepackets have equal
width, w1 = w0. The solution then becomes very compact
and is given by

A2
1 = L

3M eff
1 κ̄1 − 6M eff

0 κ̄01

2M eff
0 (κ̄0 − 3κ̄01) + 3M eff

1 (κ̄1 − 2κ̄01)
, (50)

N =
2v1

(
2M eff

0 ( κ̄0
3 −κ̄01) +M eff

1 (κ̄1 −2κ̄01)
)

(6κ̄2
01 − κ̄0κ̄1)

√
3M eff

0 (M eff
1 −M eff

0 )
, (51)

w1 =
�

−M eff
1 v1

√
3(M eff

0 −M eff
1 )

−2M eff
0

, (52)

with w2 = w1 = w0 and κ̄i := κiL/N being independent
from the number of atoms and the quantization length.

The state characterized by equations (50−52), which
we will refer to as “triple soliton”, represents a special
coherent superposition of a wavepacket in the transverse
ground state at the upper band edge of the optical lattice,
and two wavepackets around the transverse resonances.
The special choice (50−52) for the parameters ensures
that the mutual and self-interaction of the wavepackets
exactly cancel the dispersion of each wavepacket due to
its negative effective mass. It also guarantees, within the
approximation that only two resonances are taken into ac-
count, that the triple soliton does not spread in the trans-
verse direction. It therefore can be seen as a generalization
of the gap soliton which is unstable against transverse de-
cay. It differs from the case of a superposition of three
gap-soliton wavepackets discussed above in that the mu-
tual interaction between the wavepackets destroys the lat-
ter. This is because the stability criterion (37) and (38)
takes only into account the self-interaction of each of the
three wavepackets. For the triple soliton the mutual inter-
action is included as well.

A very interesting feature of the triple soliton is that
the width of the soliton does not depend in any way on
the interaction parameters of the system. It is solely de-
termined by the structure of the lowest energy band of
the optical lattice and in particular is proportional to the
de Broglie wavelength of a particle of mass −M eff

1 moving
with the velocity v1. The number N of atoms in the soliton
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b)
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M1
eff �M0

eff

Fig. 2. (a) Group velocity and absolute value of effective
masses as a function of the optical lattice depth V0. (b) Ful-
fillment of condition (53) as a function of V0. The solid line

represents Meff
1 /Meff

0 , the dashed lines are the upper and lower
bound in the inequality (53). For V0 > 0.4ER the condition is
fulfilled.

depends on the interaction parameters, but it vanishes if
the group velocity v1 of the transverse resonances goes to
zero, i.e., if the resonances are close to the band edge. The
population of the three modes depends on the interaction
and leads to consistency requirements: since A2

0 can only
take values between 0 and L we find that the soliton can
only exist if the effective masses fulfill the inequality

κ̄0

3κ̄01
≤ M eff

1

M eff
0

≤ 2κ̄01

κ̄1
. (53)

To see if this condition can be fulfilled, we have numeri-
cally calculated the band structure for a BEC in a periodic
potential of the form V0 cos(2kLz), where kL = 2π/λL is
the laser’s wavenumber and V0 the depth of the optical lat-
tice, which we will give in units of the recoil energy ER =
(1/2)Mv2

R with the recoil velocity vR = �kL/M . We con-
sider 87Rb atoms (M = 1.45× 10−25 kg, ascatt = 4.9 nm)
in an optical lattice driven by a laser close to the D2 line
(λL = 780 nm) and a 2-dimensional transverse harmonic
trap of strength ω = 534 s−1. The effective mass, the
group velocity, and the interaction parameters as a func-
tion of V0 are shown in Figures 2a and 3, respectively. As
can be seen from Figure 2b condition (53) can be fulfilled
in this parameter regime, which also lies well within the
range of current experiments [11,12]. In Figure 4 we have
plotted the width as well as the number of atoms and
population distribution for the novel kind of soliton. For
the case w0 = w1 under consideration, the population in
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Fig. 3. Interaction parameters as a function of lattice depth V0

in units of the recoil velocity vR =
√

2ER/M . Solid line: κ̄0,
dashed line: κ̄1, dot-dashed line: κ̄01.
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Fig. 4. (a) Width of the soliton wavepackets as a function
of V0. (b) Total number of atoms N (solid line) in the soliton,
and number of atoms Ni = A2

i N/L in mode i = 0 (dashed
line) and i = 1 (dotted line), respectively.

the transversally excited modes is larger than that of the
central wavepacket.

7 Conclusion

Using an averaging method we have derived effective field
equations which describe the large-scale behaviour of a
transversally confined BEC in a one-dimensional opti-
cal lattice. Due to the existence of transversally excited
modes resonant to wavepackets in the transverse ground
state, these equations have the structure of coupled
one-dimensional particles with different effective masses
and dynamical interaction parameters. We have made a
Gaussian ansatz for the envelopes of a wavepacket pre-
pared at the upper band edge and the two nearest reso-
nances in quasi-momentum space. Variational equations

for this ansatz are derived and several solutions are dis-
cussed, including a novel kind of “triple” soliton.

We wish to thank Markus Oberthaler for many fruitful dis-
cussions. This work was supported by the Heisenberg-Landau
Program, Alberta’s informatics Circle of Research Excellence
(iCORE), and the Forschergruppe Quantengase. One of the au-
thors (V.I.Y.) is grateful to the German Research Foundation
for the Mercator Professorship.

References

1. A.S. Parkins, D.F. Walls, Phys. Rep. 303, 1 (1998)
2. P.W. Courteille, V.S. Bagnato, V.I. Yukalov, Laser Phys.

11, 659 (2001)
3. A.L. Fetter, J. Low Temp. Phys. 129, 263 (2002)
4. S. Stenholm, Phys. Scr. T 102, 89 (2002)
5. L. Pitaesvkii, S. Stringari, Bose-Einstein Condensation

(Oxford University, Oxford, 2003)
6. Y. Castin, in Coherent Atomic Matter Waves, Lecture

Notes of Les Houches Summer School, pp. 1−136, edited
by R. Kaiser, C. Westbrook, F. David (EDP Sciences and
Springer, Berlin, 2001)

7. L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J.
Cubizolles, L.D. Carr, Y. Castin, C. Salomon, Science 296,
1290 (2002)

8. K.E. Strecker, G.B. Partridge, A.G. Truscott, R.G. Hulet,
Nature 417, 150 (2002)

9. S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock,
Phys. Rev. Lett. 83, 5198 (1999)

10. J. Denschlag, J.E. Simsarian, D.L. Feder, C.W. Clark,
L.A. Collins, J. Cubizolles, L. Deng, E.W. Hagley, K.
Helmerson, W.P. Reinhardt, S.L. Rolston, B.I. Schneider,
W.D. Phillips, Science 287, 97 (2000)

11. B. Eiermann, T. Anker, M. Albiez, M. Taglieber, P.
Treutlein, K.-P. Marzlin, M.K. Oberthaler, Phys. Rev.
Lett. 92, 230401 (2004)

12. B. Eiermann, P. Treutlein, Th. Anker, M. Albiez, M.
Taglieber, K.-P. Marzlin, M.K. Oberthaler, Phys. Rev.
Lett. 91, 060402 (2003)

13. P.J.Y. Louis, E.A. Ostrovskaya, Y.S. Kivshar, e-print
arXiv:cond-mat/0408291

14. B.J. Dabrowska, E.A. Ostrovskaya, Y.S. Kivshar, e-print
arXiv:cond-mat/0408234

15. L. Plaja, J. San Román, Phys. Rev. A 69, 063612 (2004)
16. V.V. Konotop, P.G. Kevrekidis, M. Salerno, e-print

arXiv:cond-mat/0404608

17. L. Fallani, L. De Sarlo, J.E. Lye, M. Modugno, R. Saers,
C. Fort, M. Inguscio, Phys. Rev. Lett. 93, 140406 (2004)

18. H. Ott, E. de Mirandes, F. Ferlaino, G. Roati, G.
Modugno, M. Inguscio, Phys. Rev. Lett. 92, 160601 (2004)

19. M. Jona-Lasinio, O. Morsch, M. Cristiani, N. Malossi, J.H.
Müller, E. Courtade, M. Anderlini, E. Arimondo, Phys.
Rev. Lett. 91, 230406 (2003)

20. K.M. Hilligsøe, M.K. Oberthaler, K.-P. Marzlin, Phys.
Rev. A 66, 063605 (2002)

21. M. Modugno, C. Tozzo, F. Dalfovo, Phys. Rev. A 70,
043625 (2004)

22. M. Kraemer, C. Menotti, M. Modugno, J. Low Temp.
Phys. 138, 729 (2005)



K.-P. Marzlin and V.I. Yukalov: Dynamics of Bose-Einstein condensates in one-dimensional optical lattices 263

23. L. Salasnich, A. Parola, L. Reatto, Phys. Rev. A 65,
043614 (2002)

24. L. Salasnich, A. Parola, L. Reatto, Phys. Rev. A 66,
043603 (2002)

25. V.A. Brazhnyi, V.V. Konotop, V. Kuzmiak, Phys. Rev. A
70, 043604 (2004)

26. A. Trombettoni, A. Smerzi, Phys. Rev. Lett. 86, 2353
(2001)

27. H. Haken, Quantum Field Theory of Solids (North-
Holland, Amsterdam, 1988)

28. J. Sipe, H. Winful, Opt. Lett. 13, 132 (1988); C.M. de
Sterke, J. Sipe, Phys. Rev. A 38, 5149 (1988); C.M. de
Sterke, J. Sipe, Phys. Rev. A 39, 5163 (1989)

29. G. Lenz, P. Meystre, E.M. Wright, Phys. Rev. A 50, 1681
(1994)

30. M. Steel, W. Zhang, e-print arXiv:cond-mat/9810284
31. V.V. Konotop, M. Salerno, Phys. Rev. A 65, 021602 (2002)
32. V.M. Pérez-Garćıa, H. Michinel, J.I. Cirac, M. Lewenstein,

P. Zoller, Phys. Rev. Lett. 77, 5320 (1996)
33. Mathematica 5.0, Wolfram Research, Illinois 2003


